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PLASTIC DEFORMATION OF A THIN CIRCULAR PLATE UNDER PRESSURE

ABSTRACT

In this report a numerical solution is given of a set of equations

consisting essentially of three plasticity laws, two strain-displacement laws,

and two equilibrium laws, which describe the action of a clamped, thin, cir-

cular plate as it yields plastically when pressure is applied to one side.

The stresses, strains, thickness variation, and deflections for any thin cir-

cular plate of a given material may be computed by the numerical integration

of the equilibrium conditions, the geometric conditions relating displace-

ments and strains, and the stress-strain laws. The solution may be reduced

to the solution of a second-order differential equation with the radial dis-

tance r as independent variable. The solution depends upon an experimentally

determined function, -r(y), which describes the stress-strain properties of
the material, and upon three parameters, the pressure p, the original thick-

ness h0 , and the radius a of the clamping ring. It is found that for a given

material, a family of curves with pa/h0 as a parameter serves to predict the

solution for any thin circular plate of the same material.

This analysis has been carried out for a particular function r(y)

based on results of a tensile test made on a specimen of medium steel. Graphs

of theoretically and experimentally determined values of deflection, radial

and circumferential strains, radial and circumferential stresses, and thick-

ness corresponding to various pressures are presented which apply to all

plates made of the same steel as this specimen.

INTRODUCTION

The plastic action of a circular plate under static pressures great

enough to cause rupture is of interest to the David Taylor Model Basin in its

program of study of damage to ships caused by underwater explosions. The

clamped circular plate is a simple model regarded as analogous in some re-

spects to one of the plate panels in a ship. The static pressure applied to

the circular plate is in the ship replaced by the pressure due to an under-

water explosion.

When sufficient pressure is applied to one side of a circular steel

plate clamped around its edge, the plate is deformed into an approximately

spherical dome or cap. If the clamping ring has a curved edge as in Figure

1, the rim of the cap is tangent to the curved edge. As the plate deforms

the metal flows so that the plate thins markedly at its center and only

slightly near the rim. A point P on the initially flat plate moves along
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Figure.1 - Diagram Showing a Thin Circular Plate
as It Deforms Plastically under Pressure

a curve such as PP' to P'. For a given deflection of the diaphragm the ra-

dial displacement u is zero at the center by reason of symmetry, reaches a

maximum somewhere between the center and edge of the plate, and drops to

zero again at the rim.

The behavior of a circular plate in the elastic range has been

considered by Hencky (1)* and by S. Way (2). In Hencky's solution bending

stresses are neglected. Way has taken both bending and stretching into ac-

count. Since the present analysis is concerned with thin plates, the bending

stresses are neglected here also. This analysis differs from Hencky's in

that it is concerned primarily with the plastic range up to rupture. The re-

sults presented here are valid for values of zo/a ranging from about 0.03 up

to about 0.30, where z0 is the central deflection. For values of zo/a cor-

responding to elastic deflection, that is, when z0/a is less than 0.03, the

results nevertheless have some validity since, as will be shown, the plastic-

ity laws chosen are identical, for small strains, with the elasticity laws

provided Poisson's ratio is taken as 0.5.

The purpose of the present report is to show how certain plastic-

ity laws, three in number, which involve an experimentally-obtained octahedral

stress-strain curve r(y), may be used to compute stresses, strains, and dis-

placements in a thin circular plate when merely the dimensions of the plate,

the pressure applied, and the true tensile stress-strain curve up to rupture

of a specimen of the material are given. The present problem has its paral-

lel in elasticity theory, but the methods employed in this report are almost

necessarily graphical and numerical due to the nonlinear character of the

stress-strain laws of plasticity. Emphasis will be placed on finding a fea-

sible approximate method to solve the general plasticity problem of the

clamped, thin, circular plate rather than on attaining a close check between

experiment and theory. Improvements in the theory which would yield numer-

ical results in closer agreement with experimental results are suggested at

the end of the report.

* Numbers in parentheses indicate references on page 30 of this report.
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BASIC ASSUMPTIONS

The calculation of stresses, stains, and displacements involves

solving simultaneously two equations which express the conditions of equilib-

rium, two geometrical relationships of strain and displacement, and three

plasticity laws which relate stress with strain in the material. In the theo-

ry the plate is assumed to be clamped by a rigid ring with a sharp inner edge;

bending moments a'e assumed negligible since the plate is thin. Consequently,

the surface of the loaded plate meets the plane of the rim at a finite angle.

The methods and formulas used in the calculations, excepting perhaps the plas-

ticity laws, are exact but for the omission of second-order terms. Hence the

validity of the results obtained hinges largely on the validity ofethe three

plasticity laws which are assumed. Of these laws, one, which expresses con-

stancy of volume of the material, has been verified experimentally with a

high degree of accuracy for certain metals. Agreement with experiment is

reasonably good for the other two laws.

DEFINITION OF STRAIN

Although there is no question in the literature as to the defini-

tion of stress and the stress tensor, there is some choice in the definition

of strain. The conventional strain E = I - l where and 10 are the final

and the initial lengths respectively, may be considered basic and other defi-

nitions of strain can be made in terms of it. The logarithic strain, for

example, designated as el, has been defined by Ludwik (3) as

+J E = log (1 + E)

where e is the conventional strain. Another definition based on the quad-

ratic form for the square of the differential of arc-length, one which guar-

antees the existence of a strain tensor, has been considered by Synge and

Chien (4). For the sake of simplicity, and because the equations to be em-

ployed are necessarily approximate themselves, strain will be taken to mean

conventional strain in this report.

STRESS-STRAIN EQUATIONS OF PLASTICITY

The plasticity laws stated in the following were given by Nadai (5)
(6); they are based on the work of a number of writers, among whom may be

mentioned von Mises (7) and Mohr (8). White (9) has applied them to a theo-

retical investigation of circular diaphragms under pressure. They have been

tested experimentally by Schmidt (10), Taylor and Quinney, Ros and Eichinger,



Nadai and Lode, and others. Nadai (6) (11) has written accounts of, and

given references for the theoretical and experimental work of these and other
writers. Davis (12) (13) has made a series of tests on cylindrical tubes to

verify these plasticity laws for copp(r and medium steel.

The stress-strain relations of plasticity which are assumed in this

report are

E1 + E2 + E = 0 [1a)

el - 2 = E2 - E E 3  - 1 [1b]

al - 42  72 - 03  a3 1 - a

1 r [lc]

where

_ -[(ox _ a 2 ) 2 + (a2 - ,)2 + 0,J) a 1  [2a]3

' = [(E, - e 2 ) 2 + (C2 - E3) 2 + (e - el)2]2 [2b]

and, as will be shown,

X = 2- [3]

In these equations el, C2, and e3 are the principal strains and a,, a2, and

01 are the principal stresses. The quantities y and r have been shown by

Nadai (11) to be, respectively, the shear strain and the shear stress in an
octahedral plane, a plane whose normal makes equal angles with the three prin-

cipal directions of strain or stress.

Equation [la] implies that, to a first order, volumes remain con-

stant. Equation [Ib] is usually associated with the assumption that at any

one point the principal axes of stress coincide with the principal axes of

strain. It may be shown that the latter condition is satisfied for a thin

circular plate under pressure. The quantity X depends on the material as
well as on the state of stress and strain at each point. Equation [Ic] im-

plies that r(y) is the same function of I for all states of stress and strain

in a material. Thus, if y has the same numerical value in two states, then

by this formula r will have the same value in the two states. Hence r(v) may

be considered to characterize the material with respect to its stress-strain

properties. It can be determined by a tensile test on the material, or by

tests on plates deformed under pressure, using formulas given later in this

report.

It may be noted that, since e, - (e1 + E2),

y -2 C1Ie1 E+6E2 + 2 2 [41J
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Equations [1] are three independent relations which connect the
six variables e,, E 2 , e 3 and a,, 02, a8. They correspond to the three stress-
strain laws of elasticity, and, in fact, may be put into a form which corre-
sponds closely to these laws. Combining Equation [ib] with Equations [2a] and

[2b], it is easily seen that

X= 2

and as a consequence of Equation [ic] the ratio X is seen to be a definite
function of y also. The principal shear stresses may therefore be expressed
in terms of shear strains by the formulas

61 - 2 T(y)2)

2

a2 6 L3 T(Y)

2 (63 (5)2

63 - a1 I T(y ) (E3- )
2 Y

These equations are equivalent to

= 2 7(_) c +

2 = 2-r ( - .2 + Z [6)

a3 = 2"-) 63 + L

where I;= !(a, + 02 + C3) is the mean normal stress as may be seen by equat-
ing the sum of the three left-hand members of Equations [6) to the sum of the
three right-hand membes of these equations and making use of Equation [la).

The physical implication is that a hydrostatic stress may be added to exist-
ing stresses without changing the strains.

Equations [6) solved for strains in terms of stresses give

1 y (7 +2[

t =1(T) [2- (+ i )]7E2, 3 - - 2(1 1 2

1 - !(a, 4+ 0'2)
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where v-(T) is the function which is inverse to -(y), These expressions are

of the same form as the laws of elasticity; the factor y('r)/3T replaces i/E
and the factor 1/2 replaces v, where v denotes Poisson's ratio.

DETERMINATION OF "r(y) FROM A TENSILE TEST

The function -(y) may be expressed in terms of quantities measured
in a tensile test of the material. This is true because in such a test, if

the three principal stresses are denoted by

al al, C2=O, o = 0

103 X75

70
65 ,,<"

60

C 55 - -- - - - - - - - - - - -

.50

0 45
a

5

~0

25

0

0

0 15

_O

Ct

0

0 0.02 0.04 0.06 0008 0.10 0.12 0.14 0.16 0.18
Conventional Strain el

Figure 2 - A Load-Strain Curve for a Medium-Steel Tensile Specimen

This load-strain curve was obtained from &, round medium-steel specimen, 0.505 inch in
diameter, made from the same sheet of medium steel as the experimental plate described
in this report. This curve is considered to Udescri-be" the material; it was used as
the basis for all computations for the theoretical prediction of the action of a thin
plate of this material.



and the three principal strains by

1 1
61 1 , 6 ~ -E, 3

then, from Equations (2a] and [2b]

7- =( 8a ]

= 4EI [8b]

Since the load L and the strain EI are the quantities usually
measured in a tensile test, it is useful to write the equation for a, I1

103 x 48

44

40-- '=;" 56 Tensile Test _0__.._. - --- -13 ] ]

0 0 Plate Ts
'.32 ""

CL
28

-20
13

0

.Cu 8

0

0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40
Octahedral Shear Strain 7

Figure 3 - Octahedral Shear Stress Plotted against Octahedral Shear Strain
The calculations of this report were based on the T(v) curve shown here. The load-strain curve
from which r(v) was computed is shown in Figure 2. The r(y) curve calculated from measurements
at the center of an experimental plate of the same material, medium steel, is shown for compari-
son. The difference between the two curves accounts in large part for the difference between
computed and experimental values of deflection in Figure 13 on page 28.

The quantities r and - for the tensile test were computed by Equations [8] and [9]. For the
plate test they were computed by Equations [11], [16], [17], [18], and [19] by use of measured
values of pressure, deflection, and strains. For strains.in the region of necking of a tensile
specimen,,r(y) should be determined from measurements of instantaneous load and minimum cross-
sectional area A of the specimen. In tis region #I should be taken as L/A and tj as (A, - A)/A.
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terms of them. In a tensile test the cross-sectional area is

A = AO(1 + 62)(1 + e3)

where Ao is the original cross-sectional area. It follows that

L L 1
X A 10  1 1)2

Therefore, approximately,

0j -(t e) 1191

The curve r(y) of Figure 3, which shows the relation between octa-

hedral shear stress and octahedral shear strain, was computed from the load-

strain curve L(e1 ) of Figure 2 by the use of Equations [8] and [9]. For com-

parison, the -r(y) curve determined by measurements on an experimental plate

of the same material under pressure is included in Figure 3. The extent to

which the two curves agree is a measure of the validity of the plasticity

laws assumed in this report. The difference between the two curves accounts

for a large portion of the difference between the experimental and the theo-

retical results presented herein.

STRESS-STRAIN LAWS FOR A THIN PLATE
As a thin circular plate clamped

at the rim deflects under pressure, sym-

SV p 1P=ssure metry requires that one of the principal

\stresses be the stress a, in the radial

direction and another be the stress aoin

the circumferential direction, as in Fig-

ure 4. Similarly one of the principal

strains is e,, the strain in the radial

direction, and another is te, the strain

in the circumferential direction. If a,

and 02 of Equations [6] are interpreted

to be a'. and aq respectively, then a. is

the stress in the direction perpendicular

to the plate at the point. This stress is

Figure 4 - The Principal Stresses of the order of the pressure on the plate
and Strains in a Circular and hence is of relatively negligible

Plate under Pressure
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magnitude. If a3 is set equal to zero and the relation s = -(4E 1 + 62) is

used in Equation [5], the result will be

= 2 -- ( 2 ,r + 4E) [loa]

2e = 2-Y - ( 2 e + e,) [10b]

where now, by Equation [4],

y 2/ - I r2 + E, + -E 2  [11]

Also, for biaxial stresses Equation [2a] implies that

-r =--2 a2-aa +a9
3 r r

The foregoing relations may be called the plastic stress-strain equations

for a plate under' biaxial stress.

STRAINS IN TERMS OF DISPLACEMENTS AND DEFLECTIONS

Suppose a flat circular plate is deflected to a radially symmetrical
shape as shown in Figure 1. The axis of symmetry may be taken as the z-axis

lamnping 1P h
Ring Z

r ho

Figure 1 - Diagram Showing a Thin Circular Plate
as It Deforms Plastically under Pressure

in a set of cylindrical coordinates r, 0, z. As the plate deforms, a point P

on the plate moves along a path such as PP'. Let u denote the radial dis-

placement for the point P'. If z is the deflection of this point then the
point P of coordinates ro, 00, 0 on the undeformed plate has the final coor-
dinates r, 0, z. By symmetry a 0 and the square of the arc length

dso2 = dro2 + r 0
2 d0 0

2

of an element on the undeformed plate has as its final arc length

do 2 - dr2 + r2d02 + dz2
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The strain for this element is therefore

2 22 2
d8 - dso ds - = dr +r dO 1 [12]

ds o dso dro2  + r0 o dO12

If do = deo is set equal to zero in this expression, the radial strain is

found to be

dr 2 + dz 2

dr 0 2

or,

er -- 1

dr

Therefore, since ro = r u,

1+ \dr
-r 1' [13]

Er = du

dr

If du/dr and dz/dr are small quantities, Equation [13] may be written in the

approximate form

du + L/dzI 2  
(14]

dr "2-dr)

By setting dro = 0, and dr = dro + du = du in Equation [12] the
circumferential strain is found to be

/du2 + r2d92 + dz2
r0

2 deo 2

Therefore, since 0 - 00,

dO 1 d 2+d%2

Because of radial symmetry, du/dO 0 and dz/de = 0. Hence

=- -1
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or
u
ro

In terms of the final radius r,

U
=r - u

Since u is small relative to r, we write for the purposes of this report

simply

u (15]

Equations [14] and [15] for strains in terms of 'displacements are

the familiar ones for the circular plate in elasticity theory.

THICKNESS IN TERMS OF STRAINS

Let e. denote the strain in the direction normal to the surface of

the plate. Then by Equation [la]

E,=- (-E. + )

If h0 is the initial thickness and h the thickness of the plate when de-

formed, then, by definition,

ez h - ho

It follows that

h = ho(1 -'er - ce) [16]

EQUILIBRIUM CONDITIONS

Suppose that under a pressure p the deflection function for a cir-

cular plate is z(r). The force resulting from the pressure on a cap of radius

r, Figure 5, in the direction of the z-

axis is 7rr 2p. This force is balanced

by a vertical force* due to the radial

tension tv in the plate: f
z/; dz / p - pressure

2rr dr 2 t'--

1+ (id) Figure 5 - Forces on a Spherical Cap

* The sign of the square root which appears in this expression is chosen so that the expression is
positive.
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When these forces on the cap are equated,

tr there results

P ~~epies$ re 4 dz
7rr2p =27rr dr) 2 tr

or (

Consider now the element defined by AO and
As as in Figure 6. The resultant force on
the element due to the circumferential ten-sions t at each end, as shown in Figure 6,Figure 6 - Forces on an Element is approximately t9o As. This force acts

of a Spherical Cap radially inward in a plane parallel to theoriginal plane of the plate. The component of this force in the direction ofteradial tension is approximately t6 40 As - to d Ar. The total force othe element, due to the radial tension t,., is approximately (r + Ar)A (tr. +

)2n

lt) - rAOt,.. No component due to pressure exists in the t,. direction. Hence,if the forces in the t,. direction are equated, there results the approximate

equation tef0Ar = (r + Ar)40(t,. + At,.) - rAOt;

or (r + Ar)(tte+ 
lte) - rtdtA 

a ArIf we let Ar approach zero, we obtain the exact equation

= ~ (t)= t, + r-(t,.) [18]

or
d2z

Thus, both Fc o and e may be expressed in terms of the deflection

function z(r) and the pressur. Te e stresses 
and c may be expressed in
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terms of t,, to, and the thickness h as follows,

tr [19a]

C0  1 9b]
h

By combining Equations (19] with Equations (141, [15], (16], (17], and (18],

it is seen that, if the displacements u and z of every point on the plate and

the pressure p are known, the stresses may be computed.

SOLUTION OF EQUATIONS FOR PLASTIC DEFORMATION OF A CIRCULAR PLATE

From the equations derived in the foregoing, the following inde-

pendent set of equations may be chosen to describe the action of the thin

circular plate unuer pressure:

1 r d1 "

tr + Tp-z dr [171

dr

to t, + r - (tr) (18]
dr

r =2 T O (2 1 + iE) (10a]

( 2 () (2 e + e,) [lOb]
Y

du + 1'dz\ 2  (14]
dr 2

6- (15]

h =,ho( Q eo ) [16]

t, [19a]
a,,h

g tL [19b]
h
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These equations are ten independent relations in the ten variables

tr, to, z, u, ar, ae, e, co, /, and h, containing the arbitrary parameters p

and h0 and the function r(7), which describes the material with respect to its

plastic stress-strain properties. The equations will now be transformed into

others suited to solution by numerical integration.

Equations (14] and [15] imply

d +1/Idz\%2
-=dr

or,
d~e I (d d 2

C= e + r-d7 + - [20

dr 2 (20]

By solving for if in Equation [17], we find thatdr
dz pr
dr - yt2 [21]

so that Equation [20] becomes

deg p 2r r 2
2- 4t= Ep 2+r + [22]

Equations [10] and [19] imply

tr 2e, + ea [23]

t~ 2ee+ C'

or, by Equation [18]

t,(2ce + e,) t, + r d(t-)1(2e + e

Thus

d(tr)
t( - e,.) = r- (,e + 4E)

or

d(t,) e9  e, t, 24
d- - 2,.+e r [24]

From Equation [10a] and Equations (16] and (19] there follows

tr = ho2 r() (2 6, + to)(1 - C' - e.) [25]

Equations (223, [24], [25], and [11], are four equations in the four vari-

ables er, e#, y, and t,. Inspection shows that they are equivalent to a
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single second-order differential equation in one dependent variable, say Co.

There will consequently be two arbitrary constants of integration. These

constants will be determined by two boundary conditions, for example, eq(a) =

0, 69(-a) = 0, where a is the prescribed radius of the plate. The solutions

of these equations and Equation [21] will depend not only on the radius a, but

also on the two arbitrary parameters p and h0 . Fortunately, the triple in-

finity of solutions resulting may easily be obtained from a single infinity of

solutions depending on only one parameter pa/ho . To verify this statement

it is necessary merely to rewrite Equations [21], [22], [24], [25], and [11]

in the form

= =/+2 - (Pa2 (r 2

' d V4 o

(r) ra h a+a (r) 2 Itr 2 a ()2 r2

TO) 1 tr e-er

d (r ho 2c, + eq

tr - 2 T- )-(2., + E9)(1- r - E#)
ho

2 (E, + , +,2)

In the foregoing equations r/a is the independent variable, and the dependent

variables are now z/a, e,, e9, ', and t,./ho , the parameter being pa/ho. The

two boundary conditions are that e. = 0 when 1. Although the existence

of these "proportionate coordinates" has now been established, it is con-

venient to continue the analysis with the original coordinates. Only the

graphs of the solutions need be given in proportionate units.

After the functions e,(r), eq(r), and t,(r) have been determined by

solving Equations [22], [24], [25], and [11], the deflection function z(r)

will be found by integrating Equation [21]; the constant of integration is

fixed by the boundary condition z = 0 when r = a. The quantities such as t#,

a, ae, u, and h may also be computed by Equations [10], [11], [151, [16],
[17], [18], and [19].



16

It is convenient to plot t,/h o as a function of e, and ee, using

Equations [11) and [25). Figure 7 is such a graph, in which r(y) is taken as

in Figure 3, which in turn was based on the tensile test curve of Figure 2.

Figure 7 may be considered to describe the biaxial stress-strain properties

of a thin plate of the material.

NUMERICAL SOLUTION OF EQUATIONS [11), [21], [22], [24], [25)
Equations [24] and [22] are equivalent to

t" = t-o dr [26a]
Ir2,+ e,9

e o--t 2  r Er - f -)-d [ r26b]

where to is the value of the tension t, at r = 0 and e0 is the value of the

strain E0 at r =0.

Equations [26] are solvable numerically by iteration of the two

intbgrals, by the use of Equations [11] and [25; as follows: Suppose ap-

proximations for t, and Ea in terms of r are known. Then Equations [11] and

[25), or the graph of Figure 7, give Er in terms of r. Substituting these

approximations of t,, co, and er in the right-hand side of Equations [26] and

integrating, we obtain new approximations for t. and e,. The process may

then be repeated indefinitely. A measure of the accuracy of a solution is

its proximity to the previous one.

When sufficiently accurate evaluations of E. and Eq have been se-

cured, Equations (10] may be used to find a, and ae.

Finally, the deflection function z(r) may be evaluated by an inte-

gration, since by solving for z in Equation [21], there results

r4 Prz = zo - V4t,. ~2 dr
0 d

where z0 is evaluated so that z(a) = 0. Then zo is the calculated central

deflection of the plate.

CHOICE OF PARAMETERS

A number of details concerned with the process of the numerical I
solution are of interest. It has been seen that there are but three independ-

ent parameters, Hence only three of the six quantities zo, to, e ho, P, and

a may be chosen in advance. Thus, for example, the thickness and radius of a
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Figure 7 Tension Due to Biaxial Strain

Let el and e2 be the principal strains in the plane of a thin plate and
let t3 and t2 be the corresponding principal tensions. The curves shown

here are curves of constant t1/ho plotted on el and 42.

The quantity tjL/k corresponding to ei and 62 was computed by the formulas

tl - 2 1(--Y)( 2 e + 62)(1 - , - E2)

2- VE1 + E1t 2 + 2
2

The function T(Y) was taken to be the curve of Figure 3 obtained from the

tensile-test curve on a medium-steel specimen shown in Figure 2; see pages
6 and 7 respectively.

If any two of the three quantities t I/ho, e , and e2 are given, the third
quantity may be found by interpolation on the graph.

This graph, where we have taken #r : dl t, = iland tf = '21 was used to

find ee in the theoretical computations from. ir and d#.



plate may be given and the deflection and strains may be sought as functions

of the pressure applied. Or, in other instances, the radius of a plate and

its central deflection at a given pressure may be fixed and the thickness ro-

quired to obtain this central deflection may be sought.

The numerical solution may be more lengthy with some choices of

parameters than with others. If p, h0, and co are given, the procedure is

simpler than, for example, when p, h., and a are given, for to can be comput-

ed from c0 and h0 by Equation [251 and each integration of Equations [26]

gives a better approximation of t. and eq. When t, and eq have been deter-

mined with a sufficient degree of accuracy as functions of r, the radius of

the plate is determined by setting ce equal to zero and solving for r. This

value of r is the radius a.- The deflection z is then found by integration

using Equation [21], and zo is determined so that z(a) = 0. If, instead, p,

h0, and the radius a of the plate are considered known, estimates are first

made for zo , co, to.* Then Equations [26], [25], and [11] are used itera-

tively to find sufficiently accurate determinations of tr and e6 , and a calcu-

lated radius of the plate a' is obtained by setting e. equal to zero. On the

basis of these results new evaluations of z0, c0 , and to are made and the

process is repeated until a' is sufficiently close to the given radius a of

the plate. In the case where a family of solution curves is desired, it is

equally effective and more direct to proceed by the first method, selecting

suitable sets of values for p, h0 , and c0 .

FIRST APPROXIMATIONS

To facilitate the choice of first approximations for co, tr, etc.,

the following formulas are set down. Experiments show that a deflected plate

is approximately a spherical cap. Consequently the tensions t9 and t, are

approximately equal and constant throughout the plate. That is, the relation-

ship

t. = to = to

where to is the common tension at the center, is approximately true for all

radial values r. It then follows from Equation [23) that

A first-order approximation to a spherical deflection function is

the parabolic deflection function vanishing at r = a:

Z 2 [27]

*Estimates may be made from formulas given in the next section.
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where zo is the deflection at r = 0

It may be shown (14) that, for a membrane of tension to, p is given

precisely by

- 4tozo
' a2 +zo 2

This form is preferable when zo is large compared to a.

Experiments show that tE varies in an approximately parabolic man-

ner. Hence, as a first approximation

where t0 is the strain at the center.

The quantity to/h o can be calculated when to is pre-assigned. For

at r 0 0, , -. C = E 0, and Equation [25] reduces to

to 6 E(0o) co(1 - 2co)
ho Yo

where y is the value of y at r = 0. By Equation [11]

YO --- 2 )/2 e°

and

to 3

hT i72 r(yo)(l - 2co)

Finally, there may be written the approximate law

= 
Z0

2

The plausibility of this relationship may be demonstrated as follows. Com-

bining Equation [16] and the approximate equations er = to = e0 (1 - ' 2/a 2 )
which were found in the foregoing, we obtain

ho- h = 2coho(1 -. 1-)

i.e., a parabolic variation of ho - h is implied. The volume V of the plate

before deformation is equal to its volume after deformation. Hence,

a

V=f2 rr 1 +( [

0~ ~ d ho"-2oId

= r 2h
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Therefore, to a first approximation

a

/[1 + I_(dz) 2 [-2%1--a

Since

and
dz2  4r2o

d _ 4r 2z0
2

\dr) a4

it follows that

2r 4rz [ 2( dr a2

0

or

rr~~ 4rz 0  2 2r4r
2r + 4cor(l - - -a-'- 2 -)Jdr

4 r3z012 Er( r 2\
We may neglect the term L0 1 -a 4 since it is small relative to the

others. The equation may then be reduced to

JLa

Finally,

z2~~ 2f ,

or

For convenience the foregoing approximate formulas are rewritten in

collected form
to 2

[28]

4tozo 4to V
a2 + 0

2 a(1 + Eo)
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o 3
ho - 7(y°)(1 - 2 o

r. [28]

tr = to = to

= -o _ 2 [29]

Ce = Er = E(1 -

Equations [28] give four independent relations among the seven quantities to,

z0, co, ho, p, a, and yo. Hence, if any three of these seven quantities are
given, the others may be determined if -(y) is known. The successive approxi-

mations furnished by Equations [26], [25], and [11] may then be determined,

starting with the evaluations for tr and to based on Equations [29].

This completes the consideration of initial approximations for use

in Equations [26], [25], and [11].

APPLICATION OF THE METHOD

The methods discussed in the foregoing for predicting the action of
a circular clamped plate under pressure will now be applied. The material
selected to show the application of the method is medium steel having the

i(v) characteristic of Figure 3 for the tensile specimen with the stress-
strain curve of Figure 2; see pages 6 and 7 respectively. For the purposes

of starting the computations a nominal radius of 10 inches and a thickness of
1/8 inch were chosen and used in the initial formulas. The results as finally

presented in Figures 8 to 12 inclusive are in terms of the general parameters

discussed on page 15, and so apply to any thin plate with a similar r(y)

characteristic.
The first step in the computation is to select a range of values

of z, and substitute them and the chosen values of ho, a, and r(v) in the
approximate formulas, Equations [28], to obtain a table such as Table 1.

The second step in the computation Is to tabulate t, and e# for
selected values of radial distance, using the first and third of Equations

[29]. The values of to, to, and p in Table 1 are now to be considered exact
and will be used throughout the remaining computations. The values of a and

z0 used thus far are entirely discarded from this point on. They served
merely as a convenience for starting the calculations. New and exact values
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TABLE 1

Approximate Values of co, t0, and p

The radius a is taken to be 10 inches and h, to be 1/8 inch.

)4to z0
Z 0 02 o ho-r~o) 1 - co)P =az + Z02

in inches e o in pounds per inch in pounds per

square inch

0.2 0.0004 3206 25.64

0.5 0.0025 4670 93.17

1.0 0.01 6289 251.56

1.5 0.0225 7510 416.5

2.0 0.04 8738 699.o0

2.5 0.0625 9334 878.5

3.0 0.09 9528 1o49.oo

of zo and a will later be determined for each set of values eo, to, and p.

The third step is the graphical determination from Figure 7 of e, correspond-

ing to the values of t, and ee tabulated in Step 2. The fourth step is to

substitute these evaluations of t,, e,, and c, in the integration formulas

[26] to secure new values of t, and e by numerical integration. Steps 3 and

4 are then repeated until successive approximations of t,, e, and e, show

little change. If now the values of co for a set of values co, to, ho, and

p from Table 1 are plotted against radial distance,, it will be found-that e

becomes zero at a radial distance which is found to approximate 10 inches,

the value used to obtain Table 1. The radial distance at which e9 is zero

must be considered the exact value of the radius a corresponding to the set

e, to, and p. This value of a is used, of course, in computing quantities

such as r/a and pa/ho for this set. Similarly other values of a approximat-

ing 10 inches will be found for other sets of c0 , to , and p. The quantities

E, and to were computed in this manner and the results are plotted for the

various sets as shown in Figures 8 and 9.

Other quantities such as to, a,, and ae may readily be calculated

by means of Equations [23], [16], and (19]. The quantities o, and ae were

determined in thi:s manner and the results are shown in Figures 10 and 11. 1
The deflection z at radial distance r may be computed by Equation

(21]. The values of z0 thus obtained, which differ somewhat from those used

in Table 1, are the exact values of central deflection corresponding to the

(Text continued on page 27)
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Figure 10 - Radial Stress Plotted against Radial Distance

Radial stresses in a thin circular plate were computed by integration of equilibrium, strain-
displacement, and plasticity laws. The load-strain curve of Figure 2 obtained from a tensile
test on a specimen taken from the same material as the experimental plate, medium steel, was

employed.

Experimental points numbered 3 to 7 are to be compared with points on tile theoretical curves

3 to 7, respectively.
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Figure 12 - Comparison of Theoretical and Experimental Profile Curvesat Corresponding Pressures for a Plate of Medium Steel

The theoretical deflection curves shown here were obtained by solution of the equilibrium conditions,strain-displacement relations, and the plastic stress-strain laws.
The 8 per cent discrepancy in center deflection can be ascribed chiefly to the fact the () curveobtained from a tensile test on a specimen gave values of r for biaxial stresses about 8 per cent
too high; see Figure 3 on page 7.

sets t0 , to0 , and p. Figure 12 shows curves of deflection plotted againstradial distance for various pressures thus obtained.

Figures 8, 9, 10, 11, and 12 are plotted by use of the proportion-
ate coordinates introduced and established by the equations on page 15. Thefigures therefore apply to any thin circular plate ofmaterial with the r(y)
characteristic of Figure 3, as given on page 7.

COMPARISON OF THEORY AND EXPERIMENT
With each of the graphs for e, r, a#, and z computed as inthe foregoing are shown corresponding experimental points. The data from

which these experimental points were taken were obtained at the Taylor Model
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Basin (15) on a circular medium-steel plate nominally 20 inches in diameter

and 1/8 inch thick. This plate was machined from the same stock as the ten-

sile specimen which yielded the r(1) curve used in the calculations of this

report. The fact that in the tests the rim bounding the plate had a curved i
edge of 1/2-inch radius, as in Figure 1, made necessary a correction to the

plate radius. In the computations of the experimental data a value of 10.25

inches was assumed as the radius a.

As the test plate was deformed under pressure, measurements were

made of the deflection z and the strains eq and e, at selected radii. From

these data and Equations [16], [17], [18], and [19] the values of ', and as

were computed and plotted as the experimentally determined points.

The deflection curves of Figures 12 and 13 are considered to be the

most significant check of theory and experiment in that the deflection is sub-

ject to direct observation with only small error. The two sets of curves in

Figures 12 and 13 correspond in pairs to selected values of the proportionate

pressure pa/ho. It will be seen that at low pressures the agreement is within

a few per cent. As the pressure is increased, the experimental values exceed

, 104X 1O

8 ' i " iFracture"
7 ~ a~a =90,000

4)/

I S ,

* o
' t-o---,--

V Theoreticol
IL 3 -'L' ' I"'11

"xporinmentol - TMB Test 7,
0 .100Medium Steel

Elastic ,,Elastic. J0Q Plate Skin .i

• J -Plastic Skin

0 0.02 0.06 0.10 0.14 0.18 0.22 0.26 0.30 0.34 0.38
Proportionate Central Deflection 'a

Figure 13 - Comparison of Theoretical and Experimental Curves
of Pressure against Center Deflection

The theoretical curve was obtained by integration of equilibrium, strain-displacement,
and plasticity laws using a load-strain curve obtained from a medium-steel specimen.

The experimental curve was obtained by direct measurement on a medium-steel plate of
nominal radius 10 inches and thickness 1/8 inch,
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the calculated values by larger amounts; the largest discrepancy is about 8
per cent.

The lower of the two T(y) curves in Figure 3 on page 7 was obtained

from the experimental stresses and strains for the center of the plate, by

the use of Equations [2) and [11]. This curve may be referred to as the
experimental r(y) curve for the plate. The other curve shown in Figure 3,

although obtained experimentally from a uniaxial test, may conveniently be

regarded as the theoretical r(y) curve for the plate. It will be noted that

the theoretical values of r exceed the experimental ones for a given value

of y. Because of high theoretical values of r, theoretical stresses should

be high for a given pair of strains. This statement is corroborated by the
stress values shown in Figures 10 and 11. As expected, the theoretical val-

ues of stress are generally higher than the experimental ones for a given

value of paA 0 ; at high pressures the difference may be as much as 10 per

cent. As a result of high theoretical stresses, the theoretical pressure

is high for a given deflection. It follows that the theoretical deflections

should be lower than the experimental ones for a given pressure. These de-

ductions are also corroborated by the deflection curves of Figures 12 and 13.

In Figures 8 and 9 on pages 23 and 24 the theoretical and experi-
mental values of strain are presented for selected values of z0/a. It is

believed that a major portion of the discrepancy between theoretical and ex-
perimental values of strain may be ascribed to errors arising from difficul-

ties encountered in using metalectric strain gages. It will be seen that at
low deflections the theoretical values of strain usually are exceeded by the

computed values. The measured values exceed estimates based on any of the

known plate or membrane formulas for small or moderate deflections. As the

deflection is increased, there is agreement on tne average in Figure 8 ex-

cept at large values of radial distance. A small portion of the discrepancy

near the edge of the plate may be due to bending strains since such strains

were not taken into account in the theory, In this region the experimental
plate should be less convex than the theory indicates, and the measured ra-

dial strains accordingly less for a given value of zoia.

Computations not described in this report show that a better check
of theoretical and experimental values of deflection will result if logarith-

mic strains are used in place of the conventional strains in the assumed plas-

ticity laws. Such a refinement and the elimination of the discrepancy between

uniaxial and biaxial --(y) characteristics obtained in the tests are believed

generally to outweigh other refinements that could be made in the theory,

such as the inclusion of bending stresses or the use of exact strain-
displacement relations in the computations in place of first-order approx-

imations.
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CONCLUSIONS

The plasticity laws, Equations [1] and [2], together with equilib-

rium conditions and strain-displacement relationships for the clamped, thin,

circular plate under pressure, may be numerically integrated to give theoreti-

cal values of stresges, strains, and deflections at a given pressure.

Results so obtained were found to be in agreement with experiment

within about 10 per cent,
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